Connect with us

Industrial Hardware and Machine Parts

The necessity of bolted flange connection training

Published

on

 

 

The Necessity of Bolted Flange Connection Training

There are numerous considerations for ensuring that a bolted flange connection (BFC) does not leak. They include damaged bolts and nuts, as well as flanges that are too far apart, misaligned or bent. Other issues involve sealing surface damage, improper lubrication, excessive piping loads, and excessive or insufficient bolt loads.

Additional considerations include debris on sealing surfaces, damaged gaskets, correct calibration and hookup of torque-limiting equipment, and proper tightening procedures.

Of these factors, nothing is as vital as the expertise of mechanics. No one is closer to the job or has a better opportunity to call out questionable conditions that can prevent a gasket from acquiring a successful sealing load.

Training ranges from on-site programs set up by company engineers to trial-and-error knowledge passed down from mechanic to mechanic. These educational avenues are valuable, but a complete training program that thoroughly covers the important topics related to successful installation of a gasket is rare.

Companies rarely can afford to commit the necessary resources to create and maintain an expert on this broad and detailed subject.

Appropriate Training

Given the numerous combinations of conditions, including the bolt-up procedure if one is used, that can prevent a perfectly good gasket from reliably sealing, how can someone know if a condition is acceptable? The connection must be tight enough to develop and retain a certain value of gasket stress but not so tight that damage results to any of the three primary flange components: gasket, flange and bolts. Installers need a complete understanding of the role and limits of the components so they can take suitable actions. A training program is available that provides all of this information.

The American Society of Mechanical Engineers (ASME) PCC-1-2013 document, Guidelines for Pressure Boundary Bolted Flange Joint Assembly, provides guidance on what conditions to look for and what actions to take as well as several time-tested tightening procedures. Unfortunately, it would be rare for a mechanic to have access to this information. Although this guidance is primarily intended for engineering resources, the first of several appendices are entirely dedicated to the training needs of mechanics, and many engineers would benefit greatly from such training. Additionally, it includes specific guidance on how to set up a training package and what should be included in it.

It was not until recently that a formal training program was developed that provides this information and results in an ASME Certificate of Completion that validates the training. In February 2016, ASME formally announced the launch of its 
Bolting Specialist Qualification Training Program.

 

Components of the Training Program

The training was the result of collaboration between members of an advisory group that collectively has more than 190 years of concentrated experience in preventing BFC leaks. These include mechanical engineers thoroughly grounded in the science of flanges, bolts and gaskets, as well as professional training resources.

The entire effort was managed by the oversight of ASME Training and Development. Its goal was to develop a comprehensive training program that would draw attention to the real-world practices and observations important to preventing leaks, as well as provide a clear understanding of why they are so important.

Forms of the Training Program

The training is provided in two forms: an online package and a one-day, hands-on session conducted by an ASME-approved technical professional. The online session is divided into four parts, which provide the majority of the training information. This form allows trainees to remain at their respective places of employment and proceed at their own pace. Graphics are extensively used to clarify concepts. At the end of each section, trainees can answer a series of true-or-false or multiple choice questions crafted to test a thorough understanding of the concepts. A passing score is required before moving on to the next part.

Part 1. Principles of Bolted Flange Joints & ASME PCC-1

This module provides a general introduction to the subject, focuses on the wide range of features important to the successful sealing and maintenance of bolted flange connections, and stresses the value of leak-free operation.

Part 2. Flanges, Fasteners & Gaskets

This section draws attention to the importance of understanding the role and limits of the three primary bolted connection components and how to identify mechanical flaws that can compromise the sealing of a connection. Central to this section is understanding how and why each of the three components interact with one another.

Part 3. Putting it Together/Taking it Apart

Critical to the successful tightening of a bolted flange connection is following an approved tightening procedure. As the temperature and pressure of a connection rise, the range of successful bolt loads can become very narrow. This section focuses on how to get it right the first time. Most important, this portion explains how and why a tightening procedure works.

Part 4. Bolting Safety & Tool Handling

Large forces are always involved in the tightening of a BFC. Safety is always the top concern, and the proper handling and use of high-torque equipment is especially important.

Figures 1 and 2 display some key concepts to understand. Figure 1 introduces the force-distance relationship that develops a given value of torque.

Figure 2 explains the consequences of varying values of gasket stress, discusses the importance of understanding both lower and upper limits of tightening, and points out how a combination of high pressure and temperatures can narrow the range of safe sealing gasket stress.

The hands-on session, which becomes available upon the successful completion of all four parts, is conducted at a specialized training facility. A wide range of training equipment and power tools is available to demonstrate proper equipment setup and use.

The ASME Certificate of Completion signifies the trainee has demonstrated an understanding of the material. Maintenance personnel with the certificate will have a matured sense of expertise to bring to the field. Improvement is grounded in nderstanding, and this training is intended to provide it.

Türkiye endüstrisine, alana özel, spesifik yayınlar üreten MONETA Tanıtım’ın sektörel dergilerinin editörlüğünü yapmaktayım. Yeni nesil, dinamik yayıncılık anlayışıyla, dijital ve basılı mecralarda içerik geliştirmek için çalışmaktayız.

Continue Reading
Advertisement
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Industrial Hardware and Machine Parts

New DC Platform: Interroll presents an innovative drive solution

Published

on

Interroll is setting new standards in modern material flow technology. Interroll’s innovative range of coordinated RollerDrive products, control systems and power supply elements positions system integrators and plant constructors to now provide even more individual solutions for their customers, from plug-and-play standard applications to systems with Industry 4.0 functionality.

 The requirements placed on zero-pressure-accumulation material flow systems are becoming more demanding in terms of their technical performance. For a while now, users have required more than simply high throughputs or versatility in terms of the goods to be transported. As automation becomes more common, intelligent goods flow control plays an ever more significant role in conveyance systems. With the DC Platform, Interroll has developed a powerful technology platform that fulfills these requirements in an exemplary manner.

“With the new DC Platform, system integrators and plant constructors can choose from an innovative, coordinated range of technological solutions from a single supplier, all based on years of development and testing,” explains Armin Lindholm, Managing Director of the global Center of Excellence for rollers and RollerDrive in Wermelskirchen. “It enables them to deal with users’ requirements in a more individual manner. This new platform can be used to create a unique range of conveying solutions, from autonomous conveyors that can be commissioned without a programmable logic controller (PLC) using plug-and-play, all the way to tailor-made, high-performance systems that can be consistently and transparently integrated into the data universe of Industry 4.0 applications for the purpose of monitoring in control stations, for preventive maintenance or for other functions.”

Experience the benefits of 48 V technology

The new modular platform makes it possible for system integrators and plant constructors to design conveying systems according to customers’ requests in both 24 V and 48 V versions. With this step, Interroll is driving the technical evolution of protective low-voltage solutions that has been sketched out by automotive manufacturers. 48 V systems therefore enable the use of up to 50 percent fewer power supply elements than in 24 V systems. They enable the use of smaller wire cross-sections and longer wire lengths, and reduce the number of error sources, for instance as a result of voltage drops on the wires. This significantly reduces the investment required in the entire system and the risk of errors during commissioning.

Three power levels to choose from with the new RollerDrive

However, customers don’t just have more options when it comes to the voltage type of the new DC Platform. The new RollerDrive EC5000 also offers more flexibility in terms of its mechanical output power. The new motor rollers are available in 20 W, 35 W and 50 W versions that can take on any transport tasks for light or heavy goods. To support the implementation of conveyor solutions for heavy goods, Interroll offers the 50 W power option as well as a RollerDrive version with tubes measuring 60 mm in diameter instead of 50 mm. What’s more, the well-known IP66 and Deep Freeze design options are available; these enable RollerDrive solutions to be implemented even in areas that are cleaned using powerful water jets or that reach temperatures as low as -30° C.

Bus interface opens the door to Industry 4.0

Alongside the tried-and-tested analog interface, the EC5000 can be supplied with a bus interface based on the CANOpen standard, upon request. This means that modern conveying systems can offer data transparency for the first time. In combination with an Interroll control system with multi-protocol capability (PROFINET, EtherNet/IP and EtherCat), this means that users can consistently visualize a range of information and functions on the screen using the PLC or a web interface. One example is the display of general information about the current operating state and the operating load of the individual drives over time. In parallel, the control systems enable a range of detailed information such as precise error statuses, torque or temperature, for instance, to be read out for each individual drive.

At the same time, the new RollerDrive’s bus interface enables users to carry out completely new control functions that are required in an automated environment. As a result, users can control the acceleration, speed and deceleration of the conveyed goods in the system more precisely. This solution also allows them to position the relevant goods on the conveyor to the nearest millimeter—a key requirement in order to guarantee seamless conveying interplay between the conveyor solution and robots or automated gripper arms.

Continue Reading

Industrial Hardware and Machine Parts

Changing workplace: Digitalization and cognitive ergonomics

Published

on

Digitalization, automation and Industry 4.0 are impacting intralogistics. But how do employees cope with the upheavals of the digital revolution? This is what the still young discipline of cognitive ergonomics is investigating.

Smaller batch sizes and larger format changes, shorter product cycles and higher demands on delivery speed and flexibility – the changes in purchasing behavior and customer expectations associated with digitization are also directly reflected in intralogistics processes. At the same time, innovative, digital assistance systems such as robotics, wearables, RFID, etc., are holding their own. Moving into the warehouse, picking and shipping. Both mean a changed workload for the employees on site, whose tasks become more complex and run under greater time pressure.

Focus shifts to mental stress

Ergonomics is the adaptation of working conditions to people. Polluting environmental factors are, for example, poor lighting conditions, dirt, noise, smoke and dust or the wearing of protective clothing. In addition, there are physical exertions such as working in a standing position or under forced postures or lifting and carrying heavy loads. With the growing use of digital systems, the focus is now shifting to mental stress.

Dr. Veronika Kretschmer is a psychologist at the Fraunhofer Institute for Material handling and Logistics IML specializing in cognitive ergonomics. Within the framework of the Logistics and IT Service Center, an initiative of the Fraunhofer IML in Dortmund in cooperation with other research institutions, an interdisciplinary working group is investigating the extent to which digitization is changing the work of those affected. After all, despite all the automation, people are indispensable.

Our analyses show that employees in the warehouse are exposed to psychological demands in addition to physical strain. With the digital transformation of processes, informational stresses are now being added, which will lead to a changed stress pattern.

Order picking: Customer immediately notices faulty system

The penetration of information in the cost- and time-intensive picking area has greatly increased in recent years with the use of electronic aids such as hand scanners, pick-by-light, pick-by-voice or pick-by-vision. However, despite growing automation, manual systems still play a major role in order picking because they are often more flexible.

According to estimates, around 80% of processes are still performed manually. Order picking has an immediate effect on the company’s reputation because the customer immediately notices a faulty system. And if the focus has so far been on cost efficiency, a human-centered and ergonomic design of work environments and processes is increasingly required.

Augmented Reality has opportunities in short-term deployment

Among the “smart devices”, augmented reality (AR), the linking of reality with well-established information, has a special appeal.

A comparison of paper lists, tablets and AR glasses during palletizing suggests that AR is suitable, but usability needs to be improved.

Veronika Kretschmer refers to problems such as weight, costs and software diversity. She therefore sees the chances of this technology primarily in short-term use, for example in training or maintenance.

Virtual Serious Games for realistic trainings

Virtual reality techniques (VR) for training in the form of virtual serious games are an exciting field of investigation. They allow a VR-supported simulation for training and education with a realistic perception of situations that are difficult or cost-intensive to convey. In this way, learning success can be increased in a playful way. This is also shown by a study conducted by Veronika Kretschmar together with others. Here, the logistical activities of a packaging process were simulated realistically. The results showed good user-friendliness, a positive user experience and moderate stress.

The central goal of cognitive ergonomics is to create a “stress optimized design” of industry 4.0 systems. The changing work processes will also increase the physical and cognitive demands in intralogistics in the future. Veronika Kretschmer recommends that, in addition to the known physical strain, psychosocial activity characteristics and work organisational conditions should also be given greater consideration.

Continue Reading

Industrial Hardware and Machine Parts

ABB’s award winning solar inverter

Published

on

At Intersolar Europe, ABB’s new PVS-175-TL string inverter, which delivers up to 185 kW active power has been recognized by industry experts as the leading PV product innovation at the 2018 Intersolar Awards.

Delivering up to 65 percent savings on installation and logistic costs for ground mounted utility scale applications, the ABB PVS-175-TL delivers the largest capacity on the market for a 1500Vdc string inverter.

The unique capabilities of ABB’s new PVS-175-TL lie in its ability to generate up to 185 kW active power and the judging panel was impressed by the high modularity of the product, which improves yields and reduces operational maintenance costs. Judges praised the string inverter as the next step in improving the overall efficiency in PV systems and recognized its high power density and operating temperature range between -20°C and up to 60°C.

Together with all the key benefits of traditional string inverters, its innovative modular design means that up to 65 percent fewer inverters are required to complete the optimal power block, without the need for AC recombiners. This delivers up to 65 percent savings on installation and logistic costs, improving Levelized Cost of Electricity (LCOE) for utility-scale installations.

The three-phase PVS-175-TL with advanced digital capabilities through ABB Ability™, ABB’s comprehensive cross-divisional digital offering, delivers up to 185 kVA at 800 Vac and ultra-high-power density of 1.3 kW/kg. This not only maximizes the ROI for ground-mounted utility-scale applications but also reduces Balance of System costs for small to large scale, free field ground mounted PV installations.

“As demand for higher voltage and higher power class ratings continues to grow, we are very excited to bring to the solar energy industry a scalable and versatile solution. We are delighted to be recognized at the highest possible level in our industry, particularly with the market shifting towards new technologies to enhance solar power generation in a reliable, safe and cost-effective manner,” commented Giovanni Frassineti, who heads up ABB’s Solar Business Unit. “This latest product not only supports higher power densities, but also improves installation with reduced commissioning time. It also benefits from advanced communication and digitalization for condition based monitoring and proactive maintenance for the operator.”

Quick and easy installation, improved accessibility and visibility, advanced digitalization monitoring through ABB Ability™, bigger PV clusters and modular combiner free design are just some of the many advantages of the PVS-175-TL.

Presented at Intersolar Europe for the first time, the PVS-175-TL is a plug-and-play inverter with easy install directly onto the existing PV modules’ mounting system, using the same process as installing a DC string combiner box.

A dedicated Installer App provides simple and quick plant installation instructions and gets all inverters employed, in a single cluster, and commissioned in less than 20 minutes.

The high performing PVS-175-TL delivers:

  • High power density – largest on the market for a 1500 Vdc inverter, offering up to 65 percent savings on installation and logistics costs.
  • Installer friendly, reducing OPEX costs by 30-40 percent with quicker installation as the existing PV module’s mounting systems can be used to install the inverters, with no need for other devices like DC and AC combiner boxes, saving time and cost on site preparation and hire of plant.
  • Greater capacity without compromising on versatility – through its 12 MPPT input channels – the largest range available on the market – PV plant design flexibility and yields are increased in complex installations. The design friendly inverter solutions can be easily adapted for free field ground-mounted installations, ensuring that installers and developers are no longer locked into legacy systems.
  • Modular and combiner free design – up to 24 strings can be directly connected to the wiring compartment which, thanks to the integrated DC disconnect and AC wiring section with optional AC disconnect, eliminates the need for separate DC combiner box and AC 1st level combiners.
  • Enhanced O&M – can be achieved during the operating life of the plant through its unique Advanced Cooling Concept. The internal fans (which are not heavy-duty inverter cooling fans) can be easily removed during scheduled maintenance cycles, whilst the power module can be easily replaced without removing the wiring box. This preserves the lifetime and reliability of the product and minimizes O&M costs.
  • Digitalization – featuring ABB Ability™ to deliver improved user experience, reduced time on site through remote monitoring and predictive maintenance, future proofing the system via automatic upgrades, compliance and integration with new IP protocols. Multiple data streaming and services can be run in parallel.

ABB is consistently investing in R&D with extensive testing and development of its portfolio to deliver integrated technology and service solutions which optimize performance, reliability and return on investment of any solar installation and fulfill the requirements of local markets.

Continue Reading
Advertisement

Trending

Copyright © 2011-2018 Moneta Tanıtım Organizasyon Reklamcılık Yayıncılık Tic. Ltd. Şti. - Canan Business Küçükbakkalköy Mah. Kocasinan Cad. Selvili Sokak No:4 Kat:12 Daire:78 Ataşehir İstanbul - T:0850 885 05 01 - info@monetatanitim.com